Supervised learning with missing values

Julie Josse
INRIA, Ecole Polytechnique
25 May 2022
Emerging Challenges for Statistics and Data Sciences: Complex Data with Missingness, Measurement Errors, and High Dimensionality 2022

source: http://www.etsy.com

Introduction

Collaborators on supervised learning with missing values

- M. Le Morvan, Junior researcher at INRIA, Paris. Topic: supervised learning.
- E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris.

Topic: random forests.

- G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikit-learn in python.

1. Consistency of supervised learning with missing values. (2019). Revis.
2. Linear predictor on linearly-generated data with missing values: non consistency and solutions. AISTAT2020.
3. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020 (Oral).
4. What's a good imputation to predict with missing values? Neurips2021 (Oral).

Traumabase project: decision support for trauma patients

- 30000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 30 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

Traumabase project: decision support for trauma patients

- 30000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 30 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Estimate causal effect: Administration of the treatment
"tranexamic acid" (within 3 hours after the accident) on the outcome mortality for traumatic brain injury patients. ${ }^{1}$

[^0]
Traumabase project: decision support for trauma patients

- 30000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 30 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Predict platelet levels given pre-hospital features
Ex linear regression/ random forests with covariates with missing values

Missing values

Percentage of missing values

Different pattern: sporadic \& systematic (missing variable in one hospital) Different types: informative, non informative

Solutions to handle missing values (in the covariates)

Abundant literature: Rmistatic platform, more than 150 packages

Maximum likelihood (EM + Supplemented EM algorithms):

 modify the estimation process to deal with missing valuesPros: Tailored toward a specific problem
Cons: One specific algorithm for each statistical method...
Difficult to establish - not many softwares even for simple models ${ }^{1}$
Multiple imputation to get a complete data set
Pros: Any analysis can be performed - mice package
Cons: Generic - Computational issues for large dimensions

[^1]
Solutions to handle missing values (in the covariates)

Abundant literature: Rmistatic platform, more than 150 packages

> Maximum likelihood (EM + Supplemented EM algorithms): modify the estimation process to deal with missing values
> Pros: Tailored toward a specific problem
> Cons: One specific algorithm for each statistical method...
> Difficult to establish - not many softwares even for simple models ${ }^{1}$

Multiple imputation to get a complete data set
Pros: Any analysis can be performed - mice package
Cons: Generic - Computational issues for large dimensions
Inferential aim: Estimate parameters \& their variance Three missing data mechanisms: MCAR, MAR, MNAR

[^2]
Solutions to handle missing values (in the covariates)

Abundant literature: Rmistatic platform, more than 150 packages

> Maximum likelihood (EM + Supplemented EM algorithms): modify the estimation process to deal with missing values

Pros: Tailored toward a specific problem
Cons: One specific algorithm for each statistical method...
Difficult to establish - not many softwares even for simple models ${ }^{1}$

Multiple imputation to get a complete data set

Pros: Any analysis can be performed - mice package
Cons: Generic - Computational issues for large dimensions
Inferential aim: Estimate parameters \& their variance Three missing data mechanisms: MCAR, MAR, MNAR
Few works on supervised learning with missing values, no theoritical results, whatever the missing data mechanism

[^3]
Notations

- Random Variables:
- $X \in \mathbb{R}^{d}$: the complete unvailable data
- $\widetilde{X} \in\{\mathbb{R} \cup\{\mathrm{NA}\}\}^{d}$: incomplete data (observed), NA: Not Available
- $M \in\{0,1\}^{d}$: the missing-data pattern, the mask obs (M) (resp. $\operatorname{mis}(M)$) indices of the observed (resp. missing) entries.
- Realizations:

$$
\begin{aligned}
& x=(1.1,2.3,3.1,8,5.27) \\
& \widetilde{x}=(1.1, \mathrm{NA},-3.1,8, \mathrm{NA}) \\
& m=(0,1,0,0,1) \\
& x_{\text {obs }(\mathrm{m})}=(1.1,3.1,8), \quad x_{\operatorname{mis}(m)}=(2.3,5.27)
\end{aligned}
$$

$\mathbf{M C A R}^{2}$: For all $m \in\{0,1\}^{d}, P(M=m \mid X)=P(M=m)$
MAR^{3} : For all $m \in\{0,1\}^{d}, P(M=m \mid X)=P\left(M=m \mid X_{o b s(m)}\right)$

[^4]
Supervised learning with missing values

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$\mathbf{Y}=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{\mathbf{X}}=\left(\begin{array}{ccc}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the expected risk

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M)}, M\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern $\left(2^{d}\right)$ (Rubin, 1984, generalized propensity score)

Supervised learning with missing values

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$\mathbf{Y}=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{\mathbf{X}}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the expected risk

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M)}, M\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern (2^{d}) (Rubin, 1984, generalized propensity score)

Supervised learning with missing values

- Find a prediction function that minimizes the expected risk

Bayes rule: $f^{*} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] f^{\star}(\tilde{X})=\mathbb{E}[Y \mid \tilde{X}]$

- Empirical risk: $\hat{f}_{\mathcal{D}_{n, \text { train }}} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min }\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\tilde{X}_{i}\right), Y_{i}\right)\right)$

A new data $\mathcal{D}_{n, \text { test }}$ to estimate the generalization error rate

- Bayes consistent: $\mathbb{E}\left[\ell\left(\hat{f}_{n}(\tilde{X}), Y\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\ell\left(f^{\star}(\tilde{X}), Y\right)\right]$

Supervised learning with missing values

- Find a prediction function that minimizes the expected risk

- Empirical risk: ${\hat{\mathcal{D}_{n, \text { train }}}}^{\arg } \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\operatorname{ar}} \min \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\tilde{X}_{i}\right), Y_{i}\right)\right)$

A new data $\mathcal{D}_{n, \text { test }}$ to estimate the generalization error rate

- Bayes consistent: $\mathbb{E}\left[\ell\left(\hat{f}_{n}(\tilde{X}), Y\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\ell\left(f^{\star}(\tilde{X}), Y\right)\right]$

Differences with classical litterature

Aim: target an outcome Y (not estimate parameters and their variance) Specificities: train \& test sets with missing values. If not: distributional shift; data generating process (X, Y, M)
\Rightarrow Is it possible to use previous approaches (EM - impute), consistent?
\Rightarrow Do we need to design new ones?

Impute then Regress procedures

Imputation prior to learning: Impute then Regress

Common practice: use off-the-shelf methods 1) for imputation of missing values and 2) for supervised-learning on the resulting completed data

Separate imputation

Impute train and test separately (with a different model)
Issue: Depends on the size of the test set? one observation?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned only on the training imputed data set

Issue: Sometimes no training set at test time

Imputation train and test with the same model

Easy to implement for univariate imputation: compute the means on the observed data ($\hat{\mu}_{1}, \ldots, \hat{\mu}_{d}$) of each colum of the train set and impute the test set with the same means. (OK for Gaussian imput.) Issue: Many methods are "black-boxes" and take as an input the incomplete data and output the completed data (missForest)

Mean imputation

- $\left(x_{i 1}, x_{i 2}\right) \underset{\text { i.i. } . \mathrm{d}}{\sim} \mathcal{N}_{2}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$

$$
\begin{array}{l|c|}
\mu_{x_{2}}=0 \\
\sigma_{x_{2}}=1 \\
\rho=0.6 & \hat{\mu}_{x_{2}}=-0.01 \\
\cline { 2 - 2 } & \hat{\sigma}_{x_{2}}=1.01 \\
\cline { 2 - 2 } & \hat{\rho}=0.66 \\
\hline
\end{array}
$$

Mean imputation

- $\left(x_{i 1}, x_{i 2}\right)_{\text {i.i.d. }} \tilde{N}_{2} \mathcal{N}_{2}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$
- 70% of missing entries completely at random on X_{2}

$$
\begin{aligned}
& \begin{array}{l|c|}
\mu_{x_{2}}=0 & \hat{\mu}_{x_{2}}=0.18 \\
\sigma_{x_{2}}=1 & \hat{\sigma}_{x_{2}}=0.9 \\
\rho=0.6 & \hat{\rho}=0.6 \\
\hline
\end{array}
\end{aligned}
$$

Mean imputation

- $\left(x_{i 1}, x_{i 2}\right) \underset{\text { i.i.i.d. }}{\sim} \mathcal{N}_{2}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$
- 70% of missing entries completely at random on X_{2}
- Estimate parameters on the mean imputed data

Mean imputation deforms joint and marginal distributions

Mean imputation is bad for estimation

Individuals factor map (PCA)

Variables factor map (PCA)

PCA with mean imputation
library (FactoMineR) PCA (ecolo)
Warning message: Missing are imputed by the mean of the variable:
You should use imputePCA from missMDA

EM-PCA

library (missMDA)
imp <- imputePCA (ecolo) PCA (imp\$comp)
J. (2016). missMDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ${ }^{4} n=69000$ species -6 traits. Estimated correlation between
Pmass \& Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

[^5]
Constant (mean) imputation is consistent for prediction

Framework - assumptions

- $Y=f(X)+\varepsilon$
- $X=\left(X_{1}, \ldots, X_{d}\right)$ has a continuous density $g>0$ on $[0,1]^{d}$
- $\|f\|_{\infty}<\infty$
- Missing data MAR on X_{1} with $M_{1} \Perp X_{1} \mid X_{2}, \ldots, X_{d}$
- $\left(x_{2}, \ldots, x_{d}\right) \mapsto \mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]$ is continuous
- ε is a centered noise independent of $\left(X, M_{1}\right)$
(remains valid when missing values occur for several variables X_{1}, \ldots, X_{j})

Constant (mean) imputation is consistent for prediction

Constant imputed entry $x^{\prime}=\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right): x_{1}^{\prime}=x_{1} \mathbb{1}_{M_{1}=0}+\alpha \mathbb{1}_{M_{1}=1}$

Theorem. (J. et al. 2019)

$$
\begin{aligned}
f_{\text {impute }}^{\star}\left(x^{\prime}\right)= & \mathbb{E}\left[Y \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=1\right] \\
& \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, x_{d}=x_{d}\right]>0} \\
& +\mathbb{E}\left[Y \mid X=x^{\prime}\right] \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]=0} \\
& +\mathbb{E}\left[Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=0\right] \mathbb{1}_{x_{1}^{\prime} \neq \alpha} .
\end{aligned}
$$

Prediction with mean is equal to the Bayes function almost everywhere

$$
f_{\text {impute }}^{\star}\left(X^{\prime}\right)=f^{\star}(\tilde{X})=\mathbb{E}[Y \mid \tilde{X}=\tilde{x}]
$$

Rq: pointwise equality if using a constant out of range.
\Rightarrow Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent (for all distribution)

Consistency of constant imputation: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:
- Need a lot of data (asymptotic result) and a super powerful learner

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Consistency of constant imputation: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range
- Need a lot of data (asymptotic result) and a super powerful learner

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Bayes optimality of impute-n-regress (Le morvan et al. 2021)

Define Impute-then-Regress procedures as functions of the form: $g \circ \Phi$ where $\Phi \in \mathcal{C}_{\infty}$ and $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Φ is a deterministic imputation, a function of the observed values (Ex: mean imputation, regression imputation, etc.)

Theorem

Assume that the response Y satisfies $Y=f^{\star}(X)+\epsilon$
Let g_{Φ}^{\star} be the minimizer of the risk on the data imputed by Φ. Then,
for all missing data mechanisms \& almost all imputation functions, $g_{\phi}^{\star} \circ \Phi$ is Bayes optimal
$\Rightarrow \mathrm{A}$ universally consistent algorithm trained on the imputed data $\Phi(\widetilde{X})$ is Bayes consistent

Asymptotically, imputing well is not needed to predict well

Bayes optimality of impute-n-regress (Le morvan et al. 2021)

Complete data

Imputed data (manifolds)

Rationale: Imputation create manifolds to which the learner adapts

1. All data points with a missing data pattern m are mapped to a manifold $\mathcal{M}^{(m)}$ of dimension $|o b s(m)|$ (Preimage Theorem)
2. The missing data patterns of imputed data points can almost surely be de-identified (Thom transversality Theorem) ${ }^{5}$
3. Given 2), we can build prediction functions, independent of m, that are Bayes optimal for all missing data patterns
[^6]
Which imputation function should one choose?

May be a good imputation would still provide an easier learning problem?

Which imputation function and predictor should one choose?

- Chaining oracles: $f^{\star} \circ \Phi^{C l}$ with $\phi^{C l}$ the oracle imput $\mathbb{E}\left[X_{\text {mis }} \mid X_{o b s}, M\right]$

Proposition (excess of risk of chaining oracle)

Assum PSD matrices \bar{H}^{+}\& \bar{H}^{-}s.t. for all $X \in \mathcal{S}, \bar{H}^{-} \leq H(X) \leq \bar{H}^{+}$
$\mathcal{R}\left(f^{\star} \circ \Phi^{C l}\right)-\mathcal{R}^{\star} \leq \frac{1}{4} \mathbb{E}_{M}\left[\max \left(\operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{-} \Sigma_{\text {mis } \mid o b s, M}\right)^{2}, \operatorname{tr}\left(\bar{H}_{\text {mis }, m i s}^{+} \Sigma_{\text {mis|obs }, M}\right)^{2}\right)\right]$
High excess risk if both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high (linear regression consistent)
\Rightarrow Choosing an oracle for one step, imputation or regression, imposes discontinuities on the other step, thus making it harder to learn

Which imputation function and predictor should one choose?

- Chaining oracles: $f^{\star} \circ \Phi^{C l}$ with $\phi^{C l}$ the oracle imput $\mathbb{E}\left[X_{\text {mis }} \mid X_{o b s}, M\right]$

Proposition (excess of risk of chaining oracle)

Assum PSD matrices \bar{H}^{+}\& \bar{H}^{-}s.t. for all $X \in \mathcal{S}, \bar{H}^{-} \leq H(X) \leq \bar{H}^{+}$ $\mathcal{R}\left(f^{\star} \circ \Phi^{C l}\right)-\mathcal{R}^{\star} \leq \frac{1}{4} \mathbb{E}_{M}\left[\max \left(\operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{-} \Sigma_{\text {mis } \mid o b s, M}\right)^{2}, \operatorname{tr}\left(\bar{H}_{\text {mis }, m i s}^{+} \Sigma_{\text {mis|obs }, M}\right)^{2}\right)\right]$ High excess risk if both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high (linear regression consistent)

- Learning on Cond. Imput. data (imputing as well as possible before learning): Is there a continuous function g, s.t. $g \circ \Phi^{C^{\prime}}$ is Bayes optimal? No. Size of the discontinuities are controlled by the variance-curvature tradeoff
\Rightarrow Choosing an oracle for one step, imputation or regression, imposes discontinuities on the other step, thus making it harder to learn

Which imputation function and predictor should one choose?

- Chaining oracles: $f^{\star} \circ \Phi^{C l}$ with $\phi^{C l}$ the oracle imput $\mathbb{E}\left[X_{\text {mis }} \mid X_{o b s}, M\right]$

Proposition (excess of risk of chaining oracle)

Assum PSD matrices \bar{H}^{+}\& \bar{H}^{-}s.t. for all $X \in \mathcal{S}, \bar{H}^{-} \leq H(X) \leq \bar{H}^{+}$ $\mathcal{R}\left(f^{\star} \circ \Phi^{C l}\right)-\mathcal{R}^{\star} \leq \frac{1}{4} \mathbb{E}_{M}\left[\max \left(\operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{-} \Sigma_{\text {mis } \mid o b s, M}\right)^{2}, \operatorname{tr}\left(\bar{H}_{\text {mis }, m i s}^{+} \Sigma_{\text {mis|obs }, M}\right)^{2}\right)\right]$ High excess risk if both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high (linear regression consistent)

- Learning on Cond. Imput. data (imputing as well as possible before learning): Is there a continuous function g, s.t. $g \circ \Phi^{C 1}$ is Bayes optimal? No. Size of the discontinuities are controlled by the variance-curvature tradeoff
- Optimizing imputations for a fixed regression function. Keeping f^{\star}, is there a continuous imputation function Φ s.t $f^{\star} \circ \Phi$ is Bayes optimal? Sometimes yes and no
\Rightarrow Choosing an oracle for one step, imputation or regression, imposes discontinuities on the other step, thus making it harder to learn

Jointly learn imputation and prediction: Neumiss

Explicit Bayes predictor with missing values

Linear model:

$$
Y=\beta_{0}+\langle X, \beta\rangle+\varepsilon, \quad X \in \mathbb{R}^{d}, \varepsilon \text { gaussian. }
$$

Bayes predictor for the linear model:

$$
\begin{aligned}
f^{\star}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[\beta_{0}+\beta^{\top} X \mid M, X_{o b s(M)}\right] \\
& =\beta_{0}+\beta_{o b s(M)}^{\top} X_{o b s(M)}+\beta_{\operatorname{mis}(M)}^{\top} \mathbb{E}\left[X_{\operatorname{mis}(M)} \mid M, X_{o b s(M)}\right]
\end{aligned}
$$

Assumptions on covariates and missing values

1. Gaussian pattern mixture model, PMM: $X \mid(M=m) \sim \mathcal{N}\left(\mu_{m}, \Sigma_{m}\right)$
2. Gaussian assumption $X \sim \mathcal{N}(\mu, \Sigma)+$ MCAR and MAR
3. (Also for Gaussian assumption + MNAR self mask gaussian)

Under Assump. 2 the Bayes predictor is linear per pattern

$f^{\star}\left(X_{o b s}, M\right)=\beta_{0}^{\star}+\left\langle\beta_{o b s}^{\star}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}^{\star}, \mu_{m i s}+\sum_{m i s, o b s}\left(\sum_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$
use of obs instead of $o b s(M)$ for lighter notations - Expression for 2.

Linear model with missing values not necessarely linear

Example

Let $Y=X_{1}+X_{2}+\varepsilon$, where $X_{2}=\exp \left(X_{1}\right)+\varepsilon_{1}$. Now, assume that only X_{1} is observed. Then, the model can be rewritten as

$$
Y=X_{1}+\exp \left(X_{1}\right)+\varepsilon+\varepsilon_{1},
$$

where $f\left(X_{1}\right)=X_{1}+\exp \left(X_{1}\right)$ is the Bayes predictor. In this example, the submodel for which only X_{1} is observed is not linear.
\Rightarrow There exists a large variety of submodels for a same linear model.
Depend on the structure of X and on the missing-value mechanism.

Neumiss Networks to approximate the covariance matrix

Order- ℓ approx of the Bayes predictor in MAR

$f_{\ell}^{\star}\left(X_{o b s}, M\right)=\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\sum_{m i s, o b s} S_{o b s(m)}^{(\ell)}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$.
Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$

Neumiss Networks to approximate the covariance matrix

Order- ℓ approx of the Bayes predictor in MAR

$$
f_{\ell}^{\star}\left(X_{o b s}, M\right)=\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\sum_{m i s, o b s} S_{o b s(m)}^{(\ell)}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle .
$$

Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$
\Rightarrow Neural network architecture to approximate the Bayes predictor

Figure 1: Depth of $3, \bar{m}=1-m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

Networks with missing values: $\odot M$ nonlinearity

- Implementing a network with the matrix weights $W^{(k)}=\left(I-\Sigma_{o b s(m)}\right)$ masked differently for each sample can be challenging
- Masked weights is equivalent to masking input \& output vector. Let v a vector, $\bar{m}=1-m .\left(W \odot \bar{m} \bar{m}^{\top}\right) v=(W(v \odot \bar{m})) \odot \bar{m}$
$\underline{\text { Classic network with multiplications by the mask nonlinearities } \odot M}$

Best imputation is joint learn with regression

Experimental results

- $Y=f^{\star}(X)+\epsilon . n=100,000, d=50,50 \%$ NA Gaussian X : "high/ low' correlation

- Gradient-Boosted Trees: with Missing Incorporated Attribute strategy
- Concatenating the mask to help for MNAR

Discussion - challenges

Supervised learning different from inferential aim

Bayes optimality of Impute then Regress

- Single constant imputation is consistent with a powerful learner
- Rather than a sophisticated imputation use rather a powerful learner
- Rethinking imputation: a good imputation is the one that makes the prediction easy
- Close to conditional imputation but not Cl
- Can even work in MNAR

Supervised learning different from inferential aim

Bayes optimality of Impute then Regress

- Single constant imputation is consistent with a powerful learner
- Rather than a sophisticated imputation use rather a powerful learner
- Rethinking imputation: a good imputation is the one that makes the prediction easy
- Close to conditional imputation but not Cl
- Can even work in MNAR

Implicit and jointly learned Impute-then-Regress strategy

- Neumiss network: new architecture $\odot M$ nonlinearity
- Theoritically: differentiable approximation of the cond. expectation
- Tree-based models: Missing Incorporated in Attribute

Supervised learning different from inferential aim

Bayes optimality of Impute then Regress

- Single constant imputation is consistent with a powerful learner
- Rather than a sophisticated imputation use rather a powerful learner
- Rethinking imputation: a good imputation is the one that makes the prediction easy
- Close to conditional imputation but not Cl
- Can even work in MNAR

Implicit and jointly learned Impute-then-Regress strategy

- Neumiss network: new architecture $\odot M$ nonlinearity
- Theoritically: differentiable approximation of the cond. expectation
- Tree-based models: Missing Incorporated in Attribute

Causal inference with missing values
Multiple imputation - Superlearner with missing values (aggregation) Conformal prediction with missing values (conditional by pattern)

Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic
J., I. Mayer, N. Tierney \& N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee) ${ }^{6}$
Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
\Rightarrow Federate the community
\Rightarrow Contribute!
${ }^{6}$ https://www.r-consortium.org/projects/call-for-proposals

Ressources

Examples:

- Lecture ${ }^{7}$ - General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- Lecture - Multiple Imputation: mice by Nicole Erler ${ }^{8}$
- Longitudinal data, Time Series Imputation (Steffen Moritz - very active contributor of r-miss-tastic), Principal Component Methods ${ }^{9}$

```
    7}\mathrm{ https://rmisstastic.netlify.com/lectures/
    8}\mathrm{ https://rmisstastic.netlify.com/tutorials/erler_course_
multipleimputation_2018/erler_practical_mice_2018
    9https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
```


[^0]: ${ }^{1}$ Mayer, Wager, J. Doubly robust treatment effect estimation with incomplete confounders. Annals Of Applied Statistics. 2020.

[^1]: ${ }^{1}$ Jiang, J. et al. 2019. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA.

[^2]: ${ }^{1}$ Jiang, J. et al. 2019. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA.

[^3]: ${ }^{1}$ Jiang, J. et al. 2019. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA.

[^4]: ${ }^{2}$ Michel, Naf, Spohn, " Meinshausen. 2021. PKLM: a flexible mcar test using classification.
 ${ }^{3}$ What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

[^5]: ${ }^{4}$ Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.

[^6]: ${ }^{5}$ Non transverse: the manifolds on which the data with either $\times 1$ missing or $\times 2$ missing are

